Section 1.5a Absolute Value and Inverse of Quadratic Functions

1. Graph y = |f(x)| for each function on the same grid:

a)

c)

e)

f)

2. Given each equation on the right, indicate which of the graphs on the right is the corresponding one:

 $y = -\left|-3x + 7\right|$

b)	
<i>y</i> =	

 $y = \left| \left(x + 3 \right)^2 - 4 \right|$

iii)

c) $y = -|(x-3)^2 - 5|$ d) y = |3x + 7|e) $y = |(x+3)^2 + 1|$ f) y = -|-5x - 8| + 4

$$y = |3x + 7|$$

3. Graph each of the following functions on the grid provided. Get the Domain and Range, state the piece wise function:

a) $y = |x^2 - 4|$

Domain Range:

Piece Wise Function:

 $y = \left| 0.5x^2 + 3 \right|$

Domain Range:

Piece Wise Function:

 $y = \left| \left(x - 3 \right)^2 - 4 \right|$

Domain Range:

Piece Wise Function:

 $y = -|2x^2 - 3x - 10|$

Domain Range:

Piece Wise Function:

3. Write the piecewise function that represents each absolute value function.

a)
$$y = |2x - 4|$$

b)
$$y = -\left|\frac{1}{2}x + 1\right|$$

c)
$$y = |x^2 - 2x - 3|$$

d)
$$y = \left| 0.5(x+1)^2 - 5 \right|$$

4. What is the difference between the graphs of y = |3x+1| and y = -|3x+1|.

5. What is the difference between the graphs of y = |3x+1| and y = |3x+1| + 4.

6. The following points (3,5), (-3,-7), (-2,8), (7,-10), and (-3,-9) are on the function y=f(x). What will the coordinates be on the function: $y=\left|f(x)\right|$?

7. Solve each of the following:

a)	x-3	=x	-4
,			

b)
$$|2x-3| = x+4$$

c)
$$|x^2 + 9| = 6x$$

d)
$$|2x^2 - x - 6| = 2x + 1$$

k)
$$|x^2 + 9| = 6x$$

1)
$$|2x^2 - x - 6| = 2x + 1$$

m)
$$12 = |x^2 + 3|$$

n)
$$|x^2 - 10x| = 24$$